Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Humans implicitly pick up on probabilities of stimuli and events, yet it remains unclear how statistical learning builds expectations that affect perception. Across 29 experiments, we examine the influence of task-irrelevant distributions—defined across acoustic frequency—on both tone detection in noise and tone duration judgments. The shape and range of the frequency distributions impact suppression and enhancement effects, as does a given tone's position within the range. Perception adapts quickly to changing distributions, but past distributions influence future judgments. Massed exposure to a single frequency impacts perception along a range of subsequently encountered frequencies. A novel bias emerges as well: lower frequencies are perceived as longer and higher ones as shorter. Probability-driven learning dynamically shapes perception, driven by interacting influences of sensory processing, distributional learning, and selective attention that sculpt a gain function involving modest enhancement of more-likely stimuli, and robust suppression of less-likely stimuli.more » « less
-
Abstract Multilingual speakers can find speech recognition in everyday environments like restaurants and open-plan offices particularly challenging. In a world where speaking multiple languages is increasingly common, effective clinical and educational interventions will require a better understanding of how factors like multilingual contexts and listeners’ language proficiency interact with adverse listening environments. For example, word and phrase recognition is facilitated when competing voices speak different languages. Is this due to a “release from masking” from lower-level acoustic differences between languages and talkers, or higher-level cognitive and linguistic factors? To address this question, we created a “one-man bilingual cocktail party” selective attention task using English and Mandarin speech from one bilingual talker to reduce low-level acoustic cues. In Experiment 1, 58 listeners more accurately recognized English targets when distracting speech was Mandarin compared to English. Bilingual Mandarin–English listeners experienced significantly more interference and intrusions from the Mandarin distractor than did English listeners, exacerbated by challenging target-to-masker ratios. In Experiment 2, 29 Mandarin–English bilingual listeners exhibited linguistic release from masking in both languages. Bilinguals experienced greater release from masking when attending to English, confirming an influence of linguistic knowledge on the “cocktail party” paradigm that is separate from primarily energetic masking effects. Effects of higher-order language processing and expertise emerge only in the most demanding target-to-masker contexts. The “one-man bilingual cocktail party” establishes a useful tool for future investigations and characterization of communication challenges in the large and growing worldwide community of Mandarin–English bilinguals.more » « less
An official website of the United States government
